organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sarah Bragg,^a Jane E. B. Johnson,^b Gina M. Graziano,^b Gary J. Balaich^b* and Norman E. Heimer^b

^a117 Rhonda Dr. Apt. 2, Del Rio, TX 78840, USA, and ^bHQ USAFA/DFC, 2355 Fairchild Drive, Suite 2N225, USAF Academy CO 80840-6230, USA

Correspondence e-mail: gary.balaich@usafa.af.mil

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å R factor = 0.060 wR factor = 0.158 Data-to-parameter ratio = 23.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

New C2-symmetric cyclopentadiene dimer from sodium naphthalenide reduction of 1,3,6-tri-*tert*-butylfulvene

The sodium naphthalenide reduction of 1,3,6-tri-*tert*-butylfulvene gave the dimer, *rac*-3,4-bis(1,4-di-*tert*butylcyclopenta-1,3-dien-2-yl)-2,2,5,5-tetramethylhexane [$C_{36}H_{62}$, (II)] after protonation of the disodium salt of the bis(cyclopentadienylethane) intermediate. Bond distances and angles for (II) are consistent with a bis(cyclopentadiene) structure. The ansa bridge bond is long, at 1.592 (2) Å. The substitution pattern on the cyclopentadiene rings, as well as the ansa bridge, result in an overall C_2 symmetry for (II).

Comment

The reductive dimerization of fulvenes to form bridgedcyclopentadienyl ligands is a versatile synthetic route to ansametallocene complexes, which are important in catalytic processes (Long, 1998; Brintzinger et al., 1995; Gomez & Waymouth, 2002; Aitola et al., 2002; Miller & Bercaw, 2002; Angermund et al., 2000; Bogaert et al., 2001; Ihara et al., 2001; Shaltout & Corey, 1995). Methods most commonly used directly incorporate the metal into the ligand framework, and include reaction of fulvenes with activated Ca or Sr (Rieckhoff et al., 1993; Sinnema et al., 2002), Mg/CCl₄/TiCl₃·3THF or Na(Hg)/TiCl₃·3THF (Schwemlein & Brintzinger, 1983), activated lanthanide metals (Recknagel & Edelmann, 1991; Fedushkin et al., 2001), group IV divalent halides (Eisch et al., 1998, 1999) and metal vapors at low temperature (Tacke, Dunne et al., 2001). Fulvene radical anions are key intermediates, leading to dimerization in these reactions, and have been studied by theoretical and experimental methods (Tacke, Fox et al., 2001).

Reduction of fulvenes with aromatic hydrocarbon radical anions has also been carried out. Reaction of 6,6-dimethylfulvene with sodium naphthalenide gave a dimer product, coupled at the C-1 position on the ring (Oku *et al.*, 1979), while reaction of 6,6-dimethylfulvene with sodium anthracenide followed by TiCl₃·3THF was reported to give exclusive formation of the bridged tetramethylethylene-titanocene dichloride (Schwemlein & Brintzinger, 1983). In the reductive coupling of substituted 6-dimethylaminofulvenes with lithium naphthalenide, deamination of proposed bis(cyclopentaReceived 7 July 2002 Accepted 19 July 2002 Online 23 August 2002

Figure 1

View of (II). Displacement ellipsoids are shown at the 50% probability level.

dienyl) intermediates led to the formation of substituted 6,6'bifulvenyl compounds (Kawese et al., 1989).

One of our research goals is to investigate the selectivity in reactions of aromatic hydrocarbon radical anions with various substituted fulvenes, with an emphasis on obtaining new bis(cyclopentadienyl) compounds useful as ligands for the formation of ansa-metallocene complexes. Recently, we carried out the aromatic hydrocarbon radical anion dimerization of the sterically demanding 1,3,6-tri-tert-butylfulvene, (I) (Johnson et al., 1997). A unique feature of this chemistry is the almost exclusive formation of the racemic dimer (II) (79%), from the reaction of (I) and sodium naphthalenide. The dimer (II) is formed by protonation of the isolable bis-(cyclopentadienylethane) intermediate. To our knowledge, the dimer (II) is the first reported case of a C_2 ansa-cyclopentadiene ligand synthesized by fulvene dimerization, using aromatic hydrocarbon radical anions. Research in our laboratory on the utility of (II) for the synthesis of ansametallocenes is in progress.

Single-crystal X-ray diffraction results for (II) show a nearly C_2 symmetric structure adopted as a result of selective coupling of two 1,3,6-tri-tert-butylfulvene units (Fig. 1 and Table 1). The cyclopentadiene rings are nearly eclipsed in (II) (Fig. 2), with a torsion angle of $119.0 (1)^{\circ}$ between the tertbutyl groups of the ansa bridge. C-C bond distances in (II) are comparable to those in a recently reported crystal structure of the related ansa-cyclopentadiene ligand C5H5CMe2C- $Me_2C_5H_5$ (Tacke, Dunne et al., 2001). The C1-C2 bond distance in (II) [1.592 (2) Å] is slightly shorter than in $C_5H_5CMe_2CMe_2C_5H_5$ [1.600 (3) Å], but consistent with an elongated bridge bond from steric interaction of bulky tertbutyl groups.

Experimental

Sodium naphthalenide was prepared by combining naphthalene (1.63 g, 12.7 mmol) and sodium (0.31 g, 13 mmol) in dry THF (100 ml) under N₂ and allowing the dark-green solution to vigorously stir for 1 h. To the vigorously stirred sodium naphthalenide solution at 195 K was added, in one portion, a solution of 1,3,6-tri-tert-butylfulvene (3.00 g, 12.2 mmol) in dry THF (50 ml) at 195 K. The colour of the reaction mixture immediately faded from dark-green to red, and the red solution was allowed to stir for 30 min at 195 K under N₂. The reaction mixture was allowed to slowly warm to room temperature, and THF removed under vacuum. Dry CH₃CN (50 ml) was added to the resulting crude orange solid under N2, and the mixture exposed to air. Ammonium chloride (3 ml, 5 M, 15 mmol) was added to the CH₃CN solution, resulting in the precipitation of a white solid. The white solid was filtered, washed with CH₃CN (30 ml), and dissolved in C₆H₆ (50 ml). Filtration of solids followed by removal of C₆H₆ and vacuum drying yielded 2.37 g (79%) of the dimer (II) as a white solid. Crystals suitable for single-crystal X-ray analysis were obtained from 50/50 MeOH/C6H6 as colourless and transparent prisms with well defined faces. ¹H NMR 200 MHz (C₆D₆, 303 K, p.p.m.): δ 1.14, 1.15, 1.41 (s, 54H, ^tBu); 2.96 (broad s, 4H, ring CH₂); 3.43 (s, 2H, bridge CH^tBu); 5.86 (m, 2H, ring CH). ¹³C NMR 75.5 MHz (C₆D₆, 303 K, p.p.m.): δ 30.8, 31.2, 33.0 [C(CH₃)₃]; 32.7, 35.7, 36.9 [C(CH₃)₃]; 40.4 (ring CH₂); 45.7 (CH'Bu); 131.5 (ring CH); 139.4, 145.2, 148.1 (ring C). Selected FT-IR (KBr pellet, cm⁻¹): 3104 (w, v_{ringCH}) ; 2958, 2903, 2866 (s, v_{CH}) ; 1620 $(m, v_{C=C})$. M.p. = 433.1 K decomposition (DSC). The measured density at 173 K was obtained by correcting the measured density at room temperature $(0.954 \text{ Mg m}^{-3}, \text{ flotation})$ to 173 K using the room-temperature diffraction data [a = 16.4307 (10) Å, b = 10.5281 (7) Å, c =19.8552 (12) Å, $\beta = 96.2200 (10)^{\circ}$ and $V = 3414.4 (4) Å^{3}$].

Crystal data

$C_{36}H_{62}$	D_m measured by correction from
$M_r = 494.89$	room temperature data
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 16.279(1) Å	Cell parameters from 4491
b = 10.519(1) Å	reflections
c = 19.680 (2) Å	$\theta = 2.3-22.6^{\circ}$
$\beta = 96.935 \ (1)^{\circ}$	$\mu = 0.05 \text{ mm}^{-1}$
$V = 3345.4 (5) \text{ Å}^3$	T = 173 (2) K
Z = 4	Prism, colorless
$D_x = 0.983 \text{ Mg m}^{-3}$	$0.45 \times 0.27 \times 0.13 \text{ mm}$
$D_m = 0.974 \text{ Mg m}^{-3}$	

Data collection

Bruker CCD area-detector	7984 independent reflect
diffractometer	5492 reflections with $I >$
φ and ω scans	$R_{\rm int} = 0.047$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.4^{\circ}$
(SADABS; Sheldrick, 2001)	$h = -20 \rightarrow 20$
$T_{\min} = 0.84, \ T_{\max} = 0.99$	$k = -13 \rightarrow 13$
28 797 measured reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.158$ S = 1.037984 reflections 343 parameters H-atom parameters constrained

tions $2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0727P)^2]$ + 0.6485P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.006$ $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

C1-C8	1.521 (2)	C13-C15	1.534 (2)
C1-C13	1.590 (2)	C13-C16	1.537 (2)
C1-C2	1 592 (2)	$C_{13} - C_{14}$	1 537 (2)
$C^{2}-C^{3}$	1 526 (2)	$C_{17} - C_{20}$	1531(2)
$C_2 = C_3$	1.520(2) 1 580(2)	$C_{17} = C_{20}$	1.531(2) 1.530(2)
$C_2 = C_1 / C_2$	1.369 (2)	C17 - C10	1.539(2)
C3-C4	1.339 (2)	C17=C19	1.540 (2)
C3-C/	1.487 (2)	C21-C22	1.528 (2)
C4-C5	1.519 (2)	C21-C23	1.533 (3)
C4-C21	1.531 (2)	C21-C24	1.535 (3)
C5-C6	1.499 (2)	C25-C28	1.528 (3)
C6-C7	1.335 (2)	C25-C27	1.532 (3)
C6 - C25	1 517 (2)	$C_{25} - C_{26}$	1540(3)
C8 C12	1.359(2)	C_{29}^{20} C_{30}^{20}	1572(2)
$C_{0}^{0} = C_{12}^{0}$	1.339(2) 1.482(2)	$C_{29} = C_{30}$	1.522(2) 1.521(2)
C3-C3	1.465 (2)	C29-C32	1.531 (2)
C9-C10	1.335 (2)	$C_{29} = C_{31}$	1.532 (2)
C10-C11	1.496 (2)	C33-C36	1.524 (2)
C10-C29	1.519 (2)	C33-C34	1.527 (3)
C11-C12	1.519 (2)	C33-C35	1.530 (3)
C12-C33	1.533 (2)		
C8-C1-C13	109.03 (11)	C16-C13-C1	109.38 (12)
C8-C1-C2	116.44 (11)	C14-C13-C1	111.34 (13)
C13-C1-C2	113.61 (11)	C20-C17-C18	108.22 (14)
$C_{3}-C_{2}-C_{17}$	109.62 (12)	C20 - C17 - C19	107.62 (14)
$C_{3}-C_{2}-C_{1}$	116.06(11)	$C_{18} - C_{17} - C_{19}$	10643(14)
C_1^{17} C_2^{17} C_1^{17}	112.88 (11)	C_{10} C_{17} C_{2}	112.86 (12)
C1/=C2=C1	107.00 (11)	$C_{20} = C_{17} = C_{2}$	113.60 (13)
4-03-07	107.99 (12)	C18 - C17 - C2	111./3 (13)
C4 - C3 - C2	130.81 (13)	C19 - C17 - C2	108.65 (13)
C7 - C3 - C2	120.91 (12)	C22 - C21 - C4	116.80 (13)
C3-C4-C5	107.84 (13)	C22-C21-C23	106.73 (16)
C3-C4-C21	135.58 (14)	C4-C21-C23	109.36 (14)
C5-C4-C21	116.58 (13)	C22-C21-C24	106.98 (17)
C6 - C5 - C4	105 27 (12)	C4 - C21 - C24	108 19 (15)
C7 $C6$ $C5$	107.24(13)	C^{23} C^{21} C^{24}	108.52(18)
$C_{7} = C_{0} = C_{3}$	107.24(15) 120.07(15)	$C_{23} = C_{21} = C_{24}$	100.52(10) 110.70(12)
C7=C0=C23	129.07 (13)	C0=C25=C28	110.70 (13)
05-06-025	123.67 (13)	C6-C25-C27	110.27 (15)
C6 - C/ - C3	111.65 (13)	$C_{28} - C_{25} - C_{27}$	109.36 (16)
C12-C8-C9	108.10 (12)	C6 - C25 - C26	108.97 (14)
C12-C8-C1	131.21 (12)	C28-C25-C26	108.60 (16)
C9-C8-C1	120.32 (12)	C27-C25-C26	108.91 (16)
C10 - C9 - C8	111.27 (12)	C10 - C29 - C30	110.88 (13)
C9 - C10 - C11	107.71(12)	$C_{10} - C_{29} - C_{32}$	108 89 (13)
C_{9} C_{10} C_{29}	107.71(12) 128.14(14)	C_{10} C_{20} C_{32}	100.05 (15)
$C_{2} = C_{10} = C_{22}$	120.14(14)	$C_{30} - C_{29} - C_{32}$	109.00 (10)
CI1-CI0-C29	124.10 (13)	C10 - C29 - C31	109.95 (14)
C10-C11-C12	104.92 (11)	$C_{30} - C_{29} - C_{31}$	109.73 (14)
C8-C12-C11	107.94 (12)	C32-C29-C31	108.27 (15)
C8-C12-C33	134.79 (13)	C36-C33-C34	106.93 (16)
C11-C12-C33	117.23 (12)	C36-C33-C35	106.15 (16)
C15-C13-C16	107.72 (14)	C34-C33-C35	109.76 (19)
C15-C13-C14	107.66 (13)	C36-C33-C12	116.43 (13)
C16 - C13 - C14	10654(13)	$C_{34} - C_{33} - C_{12}$	107.72(14)
C_{15}^{-} C_{13}^{-} C_{14}^{-}	113.80(12)	$C_{35} = C_{33} = C_{12}$	107.72(14) 100.72(14)
013-013-01	113.09 (12)	05-05-012	109.72 (14)
C8-C1-C2-C3	15.63 (17)	C1-C2-C3-C4	127.04 (16)
$C_{13} - C_{1} - C_{2} - C_{17}$	118 99 (13)	$C_{2}-C_{1}-C_{8}-C_{1}^{2}$	124 79 (16)
	110.55 (15)	02-01-00-012	124.75 (10)

H atoms on C atoms were placed in calculated positions and constrained to ride on the C atom with usual bond lengths. The $U_{\rm eq}$ values were 1.5 times (methyl groups) the $U_{\rm eq}$ values of the corresponding C atoms.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT-Plus* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Bruker, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Air Force Office of Scientific Research for funding of this work. Helpful suggestions from

Figure 2

View of (II) along the C1-C2 bond axis. Ring *tert*-butyl groups have been omitted for clarity. Displacement ellipsoids are shown at the 50% probability level.

Professor Ian P. Rothwell of Purdue University are also gratefully acknowledged.

References

- Aitola, E., Repo, R., Bergstrom, C. & Leskela, M. (2002). J. Appl. Polym. Sci. 84, 2743–2752.
- Angermund, K., Fink, G., Jensen, V. R. & Kleinschmidt, R. (2000). Chem. Rev. 100, 1457–1470.
- Bogaert, S., Chenal, T., Mortreux, A., Nowogrocki, G., Lehmann, C. W. & Carpentier, J. (2001). Organometallics, 20, 199–205.
- Brintzinger, H. H., Fischer, D., Mulhaupt, R., Rieger, B. & Waymouth, R. M. (1995). Angew. Chem. Int. Ed. Engl. 34, 1143–1170.
- Bruker (2001). SMART (Version 5.625), SAINT-Plus (Version 6.22) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Eisch, J. J., Shi, X. & Owuor, F. A. (1998). Organometallics, 17, 5219-5221.
- Eisch, J. J., Owuor, F. A. & Shi, X. (1999). Organometallics, 18, 1583-1585.
- Fedushkin, I. L., Dechert, S. & Schumann, H. (2001). Angew. Chem. Int. Ed. 40, 561–563.
- Gomez, F. J. & Waymouth, R. M. (2002). Macromolecules, 35, 3358-3368.
- Ihara, E., Yoshioka, S., Furo, M., Katsura, K., Yasuda, H., Mohri, S., Kanehisa, N. & Kai, Y. (2001). Organometallics, 20, 1752–1761.
- Johnson, E. S., Balaich, G. J., Fanwick, P. E. & Rothwell, I. P. (1997). J. Am. Chem. Soc. 119, 11086–11087.
- Kawase, T., Nisato, N. & Oda, M. (1989). J. Chem. Soc. Chem. Commun. pp. 1145–1146.
- Long, N. J. (1998). Metallocenes: An Introduction to Sandwich Complexes, pp. 227–272. London: Blackwell Science Ltd.
- Miller, S. A. & Bercaw, J. E. (2002). Organometallics, 21, 934-945.
- Oku, A., Yoshida, M. & Matsumoto, K. (1979). Bull. Chem. Soc. Jpn, 52, 524–528.
- Recknagel, A. & Edelmann, F. T. (1991). Angew. Chem. Int. Ed. Engl. 30, 693–694.
- Rieckhoff, M., Pieper, U., Stalke, D. & Edelmann, F. T. (1993). Angew. Chem. Int. Ed. Engl. 32, 1079–1081.
- Schwemlein, H. & Brintzinger, H. H. (1983). J. Organomet. Chem. 254, 69–73. Shaltout, R. M. & Corey, J. Y. (1995). Tetrahedron, 51, 4309–4320.
- Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
- Sinnema, P., Hohn, B., Hubbard, R. L., Shapiro, P. J., Twamley, B., Blumenfeld, A. & Vij, A. (2002). Organometallics, 21, 182–191.
- Tacke, M., Dunne, J. P., Fox, S., Linti, G. & Teuber, R. (2001). J. Mol. Struct. **570**, 197–202.
- Tacke, M., Fox, S., Cuffe, L., Dunne, J. P., Hartl, F. & Mahabiersing, T. (2001). J. Mol. Struct. 559, 331–339.